**College of Engineering Department of Civil Engineering** 



## **CE 508** Physicochemical Treatment Processes

| Credit and<br>Contact hours                      | 3 / 3 (Lectures), 0 (Tutorials), 0 (Laboratory)                                                                                                                                                                                                                                                                                                                                                                 |                                  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Required, or<br>Elective                         | Required                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |  |
| Course<br>Description                            | Fundamentals of process kinetics and reactor engineering. Aeration and gas<br>transfer, coagulation and flocculation, sedimentation, filtration, and disinfection.<br>Adsorption, ion exchange and membrane processes. Chemical sludge treatment<br>and handling.                                                                                                                                               |                                  |  |
| Prerequisites<br>or Co-<br>requisites            | CE 448 Water and Wastewater Treatment, and<br>CE 443 Water and Wastewater Laboratory                                                                                                                                                                                                                                                                                                                            |                                  |  |
| Course<br>Learning<br>Outcomes                   | Students completing this course successfully will be able to:                                                                                                                                                                                                                                                                                                                                                   |                                  |  |
|                                                  | Course Learning Outcomes (CLOs)                                                                                                                                                                                                                                                                                                                                                                                 | Related Student<br>Outcomes (SO) |  |
|                                                  | <b>CLO1.</b> Review basic engineering principles for Water Quality Parameters -<br>Physical and chemical properties of targeted pollutants and reaction kinetics. K1                                                                                                                                                                                                                                            | SO1                              |  |
|                                                  | <b>CLO2.</b> Understanding the theory and kinetics of Engineering Reactors. K1                                                                                                                                                                                                                                                                                                                                  | SO1                              |  |
|                                                  | <b>CLO3.</b> Design the physical unit operations and processes for water and wastewater treatment. S4                                                                                                                                                                                                                                                                                                           | SO5                              |  |
|                                                  | <b>CLO4.</b> Design the chemical unit operations and processes for water and wastewater treatment. S4                                                                                                                                                                                                                                                                                                           | SO5                              |  |
|                                                  | CLO5. Design of advanced physical and chemical treatment processes. S4                                                                                                                                                                                                                                                                                                                                          | <b>SO</b> 5                      |  |
| Student<br>Outcomes<br>related to this<br>Course | <ul> <li>SO 1 Recognize advanced engineering knowledge, concepts, and techniques to identify, interpret, and analyze complex and real-life engineering problems.</li> <li>SO 5 Design novel advanced Civil Engineering systems and evaluate their performance, sustainability, and effectiveness for engineering practice and their impact in global, economic, environmental, and societal contexts</li> </ul> |                                  |  |

|                                                  | List of Topics                                                                                                                                                                                                                                                                                                                                                                                                   | Related CLOs |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                  | <ol> <li>Introduction to Physical/Chemical Water wastewater Treatment<br/>Processes: objectives of water treatment, water sources, water<br/>contaminants, overview of methods used to treat<br/>water/wastewater.</li> </ol>                                                                                                                                                                                    | CLO 1,3,4    |
|                                                  | 2. Reactor engineering: Reactors Used for the Treatment of<br>Wastewater, Mass transport processes, The Mass-Balance<br>Principle, Reaction's kinetics and reaction rates, Configurations<br>of ideal and non-ideal reactors, Principle of ideal reactor design,<br>completely mixed batch reactors, completely mixed flow<br>reactors, Determination of rate parameters in CMF reactors, Plug<br>Flow Reactors. | CLO 1,2      |
|                                                  | 3. Chemical precipitation and coagulation: particle destabilization, hydrolysing metals, polymers, mechanisms, jar tests, enhanced coagulation                                                                                                                                                                                                                                                                   | CLO 4        |
|                                                  | 4. Flocculation and Mixing: basics, theory, practice.                                                                                                                                                                                                                                                                                                                                                            | CLO 4        |
| Topics Covered                                   | <ol> <li>Sedimentation: discrete particle behavior, flocculent settling,<br/>sedimentation tank types and Design of sedimentation clarifiers.</li> </ol>                                                                                                                                                                                                                                                         | CLO 3        |
|                                                  | 6. Filtration: history, hydraulics, particle capture mechanisms, types of filters and design.                                                                                                                                                                                                                                                                                                                    | CLO 3        |
|                                                  | <ol> <li>Disinfection: pathogens, disinfectants, inactivation kinetics, CT<br/>concept, reactors, regulations, disinfection by-products and<br/>different types of disinfection processes</li> </ol>                                                                                                                                                                                                             | CLO 2,4      |
|                                                  | <ol> <li>Gas transfer and aeration: removal of dissolved gases<br/>(degasification), Gravity Aerators, Spray Aerators, Diffused Air<br/>Aeration Systems and Mechanical Aerators</li> </ol>                                                                                                                                                                                                                      | CLO 2,4      |
|                                                  | <ol> <li>Adsorption processes: types of adsorptions, factors influencing,<br/>adsorption equilibrium and development of adsorption<br/>isotherms, activated carbon adsorption kinetics, analysis and<br/>design of Granular Activated carbon and PAC contactors</li> </ol>                                                                                                                                       | CLO 2,4,5    |
|                                                  | <ol> <li>Ion Exchange: softening, demineralization, Exchange processes,<br/>Exchange Materials, Synthetic Exchange resins, Exchange<br/>reaction, Equilibria, Exchange Isotherm</li> </ol>                                                                                                                                                                                                                       | CLO 2,4      |
|                                                  | <ol> <li>Membrane Processes: microfiltration, ultrafiltration,<br/>nanofiltration, reverse osmosis, forward osmosis, fouling</li> </ol>                                                                                                                                                                                                                                                                          | CLO 3,5      |
|                                                  | 12. Chemical Oxidation: Limitation of Oxidative Processes and<br>Oxidizing agents in Water and Wastewater Treatment, Principle<br>and Theories of Chemical Oxidation, Concept and definition                                                                                                                                                                                                                     | CLO 2,4,5    |
| Textbook(s)<br>and Other<br>Required<br>Material | • Water Treatment: Principles and Design, 3rd ed., John Wiley &                                                                                                                                                                                                                                                                                                                                                  | Sons.        |

| Grading<br>System | Assignments                                 | 20%  |  |
|-------------------|---------------------------------------------|------|--|
|                   | Lecture Attendance                          |      |  |
|                   | Project work                                | 20%  |  |
|                   | Mid-term exams                              | 20 % |  |
|                   | Final Exam                                  | 40 % |  |
| Instructors       | Dr. Omar A. Alrehaili / Dr. Mohab Amin Amin |      |  |
| Date of Review    | March, 2025                                 |      |  |